Preparation of BaCe0.9Yb0.1O3-δ asymmetrical membrane for hydrogen separation at high tempratures

Authors

  • A. Zamanian Gas Research Division, Research Institute of Petroleum Industry, Tehran, Iran
  • E. Ganji Babakhani Gas Research Division, Research Institute of Petroleum Industry, Tehran, Iran
  • M. Amanipour Chemical Engineering Department, Sharif University of Technology, Tehran, Iran
  • M. Heidari Chemical Engineering Department, Sharif University of Technology, Tehran, Iran
Abstract:

A mixed proton–electron conducting perovskite was synthesized by liquid-citrate method and the corresponding membrane was prepared by pressing followed by sintering. The hydrogen permeability of BaCe0.9Yb0.1O3-δ was studied as a function of temperature and hydrogen partial pressure (PH2) gradient. Using 100% dry hydrogen at 1173 K, the hydrogen permeation rate of dense membranes (1.63 mm thick) for a mixture of 60% H2/He was 0.000293 mol/(m2 s). The phase structure of powder was characterized by X-ray diffraction and thermogravimetry (TG). Scanning electron microscopy (SEM) was used to investigate the microstructure of sintered membrane. Activation energy estimated with Arrhenius equation was 29 kJ/mol.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Synthesis of a Multilayer Ceramic Membrane Used for Hydrogen Separation at High Temperature

A multilayer composite ceramic membrane was prepared by depositing a nano-scale layer of SiO2 on top of a modified porous alumina support by chemical vapor deposition (CVD) method. The modification of the support was carried out by adding a graded layer of Al2O3 (γ-alumina phase), using sol-gel method. An optimized temperature of 700 K for intermediate layer calcination was gained by XRD analys...

full text

Developing of Ethylene Glycol as a New Reducing Agent for Preparation of Pd-Ag/PSS Composite Membrane for Hydrogen Separation

In the present work, for the first time, a palladium-silver membrane has been prepared by electroless plating on the surface of a porous stainless steel disk by using ethylene glycol as a new reducing agent and polyol process. The reducing action of ethylene-glycol in the presence of PVP as a protecting surface agent produces a membrane with finely divided powder and nano-sized pores. Furthermo...

full text

exploring motivation and english test preparation strategies of iranian pre-university candidates during and at the end of test preparation period for konkur examination

the current study aimed at investigating the relationship between motivation and test preparation strategies (tpss) used by iranian pre-university students in their preparation period for the university entrance exam (uee). due to the importance of uee in iran, this study also attempted to show its impact on these two important variables. to this end, 100 pre-university students in an iranian p...

Nanostructured Palladium-Doped Silica Membrane Layer Synthesis for Hydrogen Separation: Effect of Activated Sublayers

Palladium doped silica membranes were synthesized by the sol-gel method using two different procedures. The first palladium-doped silica membrane (M1) was synthesized with a coating of four layers of silica-palladium sol. The second membrane (M2) was synthesized with a coating of two silica layers followed by a coating of two silica-palladium layers. Scanning electron microscopy (SEM) proved th...

full text

Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ at intermediate temperatures

Hydrogen permeation membranes are a key element in improving the energy conversion efficiency and decreasing the greenhouse gas emissions from energy generation. The scientific community faces the challenge of identifying and optimizing stable and effective ceramic materials for H2 separation membranes at elevated temperature (400-800 °C) for industrial separations and intensified catalytic rea...

full text

Preparation of Carbon Molecular Sieves from Pistachio Shell and Walnut Shell for Kinetic Separation of Carbon Monoxide, Hydrogen, and Methane

In this study, two Carbon Molecular Sieves using Pistachio shell (CMS P) and Walnut shell (CMS W) were prepared by a chemical vapor deposition method and used for pressure swing adsorption and separation of CO/H2 and CO/CH4. Adsorption isotherms of gases obtained for both CMS’s. The Dubinin-Radushkevich isotherm model was used for comparing pore volum...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 2

pages  57- 62

publication date 2011-08-10

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023